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Abstract K+ channels are a most diverse class of ion

channels in the plasma membrane and are distributed

widely throughout a variety of cells including cancer cells.

Evidence has been accumulating from fundamental studies

indicating that tumour cells possess various types of K+

channels and that these K+ channels play important roles in

regulating tumor cell proliferation, cell cycle progression

and apoptosis. Moreover, a significant increase in K+

channel expression has been correlated with tumorigenesis,

suggesting the possibility of using these proteins as trans-

formation markers and perhaps reducing the tumor growth

rate by selectively inhibiting their functional activity.

Significant progress has been made in defining the prop-

erties of breast K+ channels, including their biophysical

and pharmacological properties and distribution throughout

different phases of the cell cycle in breast cell line MCF-7.

This review aims to provide a comprehensive overview of

the current state of research into K+ channels/currents in

breast cancer cells. The possible mechanisms by which K+

channels affect tumor cell proliferation and cell cycle

progression are discussed.
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Introduction

There are numerous reports showing that progression

through the cell cycle is dependent on ion translocations

across the plasma membrane. Thus, pharmacological

blockades of K+ channels lead to cell proliferation inhi-

bition (Wonderlin & Strobl, 1996; Kunzelmann, 2005;

Lang et al., 2005; Wang, 2004; Pardo, 2004; Pardo et al.,

2005). Several studies have demonstrated that K+ channel

activity is also a determinant factor for cell progression

through the G1 phase of mitosis (Wonderlin & Strobl,

1996; Kunzelmann, 2005; Chittajallu et al., 2002). Another

link between K+ channels and the cell cycle is indicated by

the finding that the activities of some K+ channels change

cyclically as cells progress through the division cycle.

Czarnecki et al. (2003) have also reported an upregulation

of the K+ current in quiescent cells (Go phase) compared

with those in the proliferating GH3 pituitary cell line.

Furthermore, Kv1.4 and Kv4 a-subunits are responsible for

K+ current in GH3 cells.

In the MCF-7 breast cancer cell line, we and the

Wonderlin group have reported that both proliferation

control and cell cycle progression depend on K+ channel

activity according to the ‘‘membrane potential’’ model

(Wonderlin, Woodfork & Strobl, 1995; Ouadid-Ahidouch

et al., 2001). Thus, the proliferation inhibition by K+

channel blockers is due to membrane depolarization. On the

basis of electrophysiological studies, it has been suggested

that at least six types of K+ currents, with differing degrees

of dependence on voltage, intracellular Ca2+ and ATP, are

expressed in MCF-7 human breast cancer cells (Wegman,

Young & Cook, 1991; Klimatcheva & Wonderlin, 1999;

Ouadid-Ahidouch et al., 2000, 2001, 2004a, 2004b).

Here, we review the mechanisms by which K+ channels

control the breast cancer cells’ cycle progression, focusing
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on events in G1, and then discuss the deregulation of K+

channels in cancer.

K+ Channels and Breast Tumorigenesis

All studies carried out on breast tissues show overexpres-

sion of K+ channels (Stuhmer et al., 2006). EAG (Ether-a-

gogo) channels are overexpressed in many tumors includ-

ing breast cancer (Hemmerlein et al., 2006). KCNK9

encodes a TASK (TWIK-Related Acid-Sensitive K+

channel) potassium channel that is amplified from threefold

to tenfold in 10% of breast tumors and is overexpressed by

fivefold to over 100-fold in 44% of breast tumors (Mu

et al., 2003). Overexpression of KCNK9 in cell lines pro-

motes tumor formation and confers resistance to both

hypoxia and serum deprivation. Mu et al. (2003) suggest

that TASK may contribute to tumorigenesis by promoting

cancer cell survival in the poorly oxygenated areas of solid

tumors. Stringer, Cooper & Shepard (2001) measured the

G-protein inwardly rectifying potassium channel GIRK1

mRNA expression in benign breast tumor tissue, primary

invasive breast carcinomas and metastatic breast carcino-

mas from axillary lymph nodes using quantitative TaqMan

reverse transcription-polymerase chain reaction (PCR) and

correlated their results with clinical parameters. They

found that GIRK1 overexpression correlated with lymph

node metastasis and that overexpression was greatest in

tumors with more than one positive lymph node. Their

results indicate that GIRK1 may be useful as a biomarker

for lymph node metastasis and possibly as a pharmaceuti-

cal target. Using immunohistochemistry, Abdul, Santo &

Hoosein (2003) reported overexpression of Kv1.3 in car-

cinomas. We performed immunohistochemical analysis on

33 primary human breast cancer specimens, 31 normal

human breast specimens and 30 hyperplastic human breast

specimens. In cancerous breast tissue, we show overex-

pression of GIRK1 K+ channels and a strong reduction in

Kv1.1 and Kv1.3 expression in comparison to control cells.

K+ Channels in Human Breast Cancer Cell Line MCF-7

Wegman et al. (1991) previously reported that the MCF-7

cell line expresses a 23-pS Ca2+ and voltage-activated K+

conductance which is not blocked by TEA (Tetraethy-

lammonium) at 10 mM. In 1995, K+ channels in human

breast cancer cell line (MCF-7) based on a pharmacologi-

cal study on cell culture, the Wonderlin group reported that

KATP channels (which are sensitive to glibenclamide and

quinidine) are responsible for progression through the cell

cycle. In 1999, Klimatchiva & Wonderlin, using whole-cell

recordings, recorded a large linear hyperpolarized

macroscopic current in MCF-7 cells, which was blocked by

2 mM intracellular ATP. Arrest of the cell cycle in early G1

by quinidine was associated with significantly smaller,

linear hyperpolarized currents. Based on these experi-

ments, they concluded that the linear hyperpolarized

current is an ATP-sensitive K+ current which is required

for MCF-7 cell progression through the G1 phase. Our

group has recorded a large macroscopic current in MCF-7

cells and fitted this current to the sum of four currents:

Kv1.1, hEAG, BKCa and hIKCa (Ouadi-Ahidouch et al.,

2000, 2001, 2004a, 2004b).

K+ Channels Involved in Cell Proliferation and Cell

Cycle Progression

In breast cancer cell line MCF-7, we and others have

reported that proliferation control and cell cycle progres-

sion depend on K+ channel activity according to the

‘‘membrane potential’’ model (Wonderlin & Strobl, 1996;

Ouadid-Ahidouch et al., 2001). Thus, the inhibition of

proliferation by K+ channels blockers is due to membrane

depolarization. Wonderlin et al. (1995) suggested that the

hyperpolarization during the transition through G0/G1 and

into the S phase probably results from an increase in the

relative permeability of the plasma membrane to K+. In

MCF-7 cells, a linear, hyperpolarized, ATP-inhibited K+

current (Klimatcheva & Wonderlin, 1999), Kv1.1 K+ cur-

rent (Ouadid-Ahidouch et al., 2000), BKCa current

(Ouadid-Ahidouch et al., 2004b), hIKCa current (Ouadid-

Ahidouch et al., 2004a) and hEAG K+ current (Ouadid-

Ahidouch et al., 2001) have been characterized. With the

exception of the BKCa channel (Roger et al., 2004; Ouadid-

Ahidouch et al., 2004b), all the others are involved in

proliferation control. The ATP-sensitive hEAG and hIKCa

K+ channels are required for the cell to proceed through the

G1 phase (Ouadid-Ahidouch et al., 2001; Wonderlin et al.,

1995; Woodfork et al., 1995).

hEAG and hIKCa, but not Kv1.1 and BKCa, Channels

Contribute to MCF-7 Progression through the Cell

Cycle

In MCF-7 cells, our experiments and those of Wonderlin

et al. (1995) provide some evidence that membrane

hyperpolarization is necessary for cell cycle progression.

Comparison of the resting membrane potential (RMP) dis-

tributions of cells arrested in G0/G1 and cells progressing

through the G1 or S phase indicated clearly that RMP hy-

perpolarizes during the G0/G1 phase transition. However,

our average RMP values measured in MCF-7 cells were

similar to those measured by Wegman et al. (1991) and
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Marino et al. (1994) but more hyperpolarized than those

measured by Wonderlin et al. (1995). Two studies have

indicated the role of K+ permeability in cell cycle control in

MCF-7 cells. First of all, Wonderlin et al. (1995) suggested

that the hyperpolarization during passage through G0/G1

and into the S phase probably results from an increase in the

relative permeability of the plasma membrane to K+, then

Wang et al. (1998) showed that an increase in the relative

permeability to K+ (by treatment with the K+ ionophore

valinomycin) could counterbalance the arrest of MCF-7

cells in G1 phase by the nonspecific K+ channel blocker

quinidine. In 2001, we consolidated this assumption by

demonstrating that the outwardly rectifying, TEA-sensitive

current controls membrane potential and induces the release

of cells from G0 (Ouadid-Ahidouch et al., 2001). Moreover,

the K+ current density was much higher in the G1 and S

phases compared with cells arrested in G0/G1.

Human EAG (hEAG) K+ channels are reported to have

oncogenic properties (Pardo et al., 1999). Their distribution

is restricted to the brain in normal tissue and becomes

ubiquitous in tumor cells (Hemmerlein et al., 2006). Our

group revealed that the expression of mRNA of the hEAG

K+ channel in MCF-7 is strongly regulated during cell

cycle progression. We also show that activation of hEAG

K+ channels induced hyperpolarization of the membrane

potential and progression through the early G1 phase

(Ouadid-Ahidouch et al., 2001). Treating MCF-7 cells with

K+ channel inhibitor (TEA), EAG inhibitor (astemizole) or

siRNA reduced cell proliferation in a dose-dependent

manner, increased the number of cells in G1 phase and

decreased the number of cells in S phase (Ouadid-Ahi-

douch et al., 2001; Borowiec et al., 2007). Surprisingly, the

hyperpolarization of membrane potential continued at the

ends of both the G1 and S phases, while both the hEAG

mRNA levels and current density decreased. In parallel, we

observed a dramatically enhanced hIKCa current density.

Pharmacologically blocking hEAG channels has been

shown to depolarize cells accumulated in early G1 and

when cells progress through G1 phase. In contrast, blocking

hIKCa induced depolarization only in cells arrested at the

end of the G1 and S phases.

Correlation between Membrane Potential, hEAG

and hIKCa Channel Activity and Intracellular [Ca2+]

Changes in the cytosolic calcium concentration [Ca2+]i may

also provide important regulatory signals during the cell

cycle. Ca2+ has been observed to be required for progres-

sion through G1 and for the G1/S transition in several cell

types (Hazelton, Mitchell & Tupper, 1979; Tupper, Kauff-

man & Bodine, 1980; Cory, Carter & Karl, 1987; Santella,

Ercolano & Nusco, 2005; Koledova & Khalil, 2006). A link

between [Ca2+]i and membrane potential was first reported

in melanoma cells, where membrane hyperpolarization

increases [Ca2+]i simply by controlling the electrochemical

gradient for Ca2+ entry into the cell (Nilius & Wohlrab,

1992). This increase in [Ca2+]i may, in turn, induce the

activation of Ca2+-activated K+ channels (KCa). In MCF-7,

the inhibition of hEAG reduces cytosolic [Ca2+]i in those

cells arrested in the early G1 phase, while the inhibition of

hIKCa induces a greater decrease in [Ca2+]i in cells arrested

at the end of G1 and throughout the S phases. We show a

direct correlation between membrane depolarization and the

decrease in the basal [Ca2+]i. Thus, inhibition of K+ chan-

nels and the decrease in [Ca2+]i represent a possible means

of specifically inhibiting MCF-7 cell proliferation.

Relation between hEAG and hIKCa Channels,

Calmodulin and Membrane Potential

Several studies have reported that hIKCa activity may be

dynamically regulated by phosphorylation (Gerlach,

Gangopadhyay & Devor, 2000; Khanna et al., 1999; Pel-

legrino & Pellgrini, 1998; Roch et al., 1995). Interestingly,

both hEAG and hIKCa channels are regulated by intracel-

lular Ca2+ and calmodulin (CaM) (Khanna et al., 1999;

Schrönherr, Lober & Heinemann, 2000). [Ca2+]i reduces

hEAG and increases hIKCa channel activity. This apparent

paradox is explained by the system’s various regulatory

mechanisms: hEAG channels are closed by the binding of

only one CaM molecule (Schrönherr et al., 2000), whereas

it has been reported that four Ca2+-loaded CaM molecules

are required to activate hIKCa channels (Fanger et al., 1999;

Keen et al., 1999). This reverse regulation can take place in

the same cell, e.g., in human melanoma, where both hEAG

and hIKCa channels have been identified (Meyer et al.,

1999). In MCF-7, a 10-lM W-7 perfusion, a CaM inhibitor,

increased hEAG current density and hyperpolarized the

membrane potential, while it reduced hIKCa current den-

sity, inducing membrane depolarization (no published

data). These results suggest that the phosphorylation-

dependent modulation of hEAG and hIKCa plays a critical

role in modulating the progression of cells through G1 and

into the S phase. Moreover, in breast cells, it has been

reported that Ca2+ is involved in controlling cell growth

through its interaction with calmodulin (Etindi & Manni,

1992). Furthermore, MCF-7 cells require CaM to traverse

the G1/S boundary (Bachs, Agell & Carafoli, 1992; Lu &

Means, 1993; Strobl, Wonderlin & Flynn, 1995). Treating

MCF-7 cells with CaM antagonists (calmidazolium and

W-12) inhibits proliferation and causes an increase in the

percentage of cells in G1 phase, accompanied by a decrease

in the percentage in S phase (Strobl et al., 1995). Recently,

it has been reported that CaM-kinase kinase (CaM-KK) and
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CaM-kinase I (CaM-KI) participate in the control of the

G0/G1 restriction checkpoint in the MCF-7 cell cycle.

Inhibition of both CaM-KI and CaM-KK by specific

interfering RNA causes an arrest in the G1 phase of the cell

cycle. This arrest seems to be due to inhibition of cyclin D1

synthesis and a reduction in pRb phosphorylation (Rodri-

guez-Mora et al., 2005).

Blockage of hEAG and hIKCa Channels Increased

p27KIP1 and p21CIP1 Levels

Cell cycle progression is tightly regulated by the activity of

several cyclin-dependent kinases (cdks) and their inhibitors

(cdkis). We analyzed the involvement of members of one

family of cdkis that are known to act in the G1 phase of the

cell cycle, p27 and p21. Induction of one or several of these

proteins by antiproliferative signals prevents G1/S transition

in the cell cycle (Martin-Castellanos & Moreno, 1996). We

therefore analyzed whether blockage of hEAG channels,

hIKCa channels or both caused accumulation of p21. Cells

treated by hEAG inhibitor showed a greater accumulation of

p21 than those treated by hIKCa blocker. When we inhibited

both K+ channels, we observed an additional accumulation

of p21. The p27 level does not seem to be affected by K+

channel inhibition. Thus, cell cycle–relevant proteins may be

directly regulated by both the hEAG and hIKCa K+ channels.

Consistent with these findings, we propose a model

(Fig. 1) that links the activity of these two classes of K+

channels. In early G1, the membrane potential is depolar-

ized (* -20 mV) with little or no hIKCa activation, due

perhaps to a low resting [Ca2+]i. hEAG is voltage-gated and

activated by depolarization, and its steady-state activity is

not null at -20 mV. A neoexpression of hEAG channels

(increase in mRNA levels) induces an increase in current

density, thus hyperpolarizing the membrane potential and

increasing Ca2+ entry. Gating of the hIKCa channel is

voltage-independent but hypersensitive to increases in

internal Ca2. Thus, the initial Ca2+ entry during G1 is

regeneratively amplified by the activation of hIKCa chan-

nels, resulting in strong hyperpolarization of the membrane

potential during progression through G1 and into S phase.

[Ca2+]i, via the CaM and/or CaM-Ks, thereby promotes the

expression of cdks and cyclin. The overexpression of

hEAG may be regulated by growth factors or estrogens.

Indeed, several studies have reported that growth factors

such as insulin, insulin-like growth factor-I, and epidermal

growth factor stimulate cell proliferation and upregulate

the expression of several K+ channels (Roderick et al.,

2003; Guo et al., 2005; Gamper et al., 2002; Xu et al.,

1999). Future studies are required to determine the intra-

cellular targets that K+ channel expression and Ca2+

channels impinge upon in order to modulate cell cycle

progression.

Fig. 1 Schematic

representation of the role that

K+ channels play in regulating

cell cycle progression in MCF-7

cells. In early G1, cells are

depolarized and the membrane

potential is maintained by

hEAG channels. The addition of

serum permits overexpression

of hEAG channels, leading to

hyperpolarization and entry into

the G1 phase. This

hyperpolarization induces entry

of Ca2+. Ca2+ influx leads to

activation of hIKCa channels

and inhibition of hEAG

channels via CaM. Activation of

hIKCa channels stimulates Ca2+

influx, leading to sustained

Ca2+increase. These Ca2+

signals promote cdks and

oscillating cyclins. G1 entry

may be regulated by growth

factors or estrogens via K+

channels
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Conclusion

We conclude that cyclical hEAG and hIKCa channel

activity is necessary to drive MCF-7 cell cycle progression.

However, many queries remain about the regulation of

breast cell K+ channels: (1) Do TRP (Transient Receptor

Potential) channels play a role in Ca2+ influx? (2) What are

the physiological roles of CaM, CaM-Ks and Ca2+ in the

control of native K+ channels? (3) Is there any regulation of

cyclins, cdkis or cdk stimulators by K+ channels?
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